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perturbative superpotentials for vector bundle moduli in Heterotic M-theory. We give an

example in which we present an explicit equation in the moduli space whose zero locus

corresponds to the fundamental fields becoming light. This allows us to provide a local

F-theory realization of massive N = 1, SU(Nc) SQCD in the free magnetic range which

dynamically breaks supersymmetry.
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1. Introduction

F-theory [1] compactified to four dimensions is potentially one of the most promising ways

to obtain phenomenological models. One of the attractive features of F-theory is that, un-

like most of the intersecting brane models, it naturally provides Grand Unification at the

compactification scale. In addition, F-theory compactifications admit a rich structure of

branes and fluxes which suggests a potential variety of possibilities to build quasi-realistic

phenomenology.

One of the reasons to expect interesting particle physics in F-theory is due to its

relation with heterotic string. For a certain type of heterotic compactifications, namely

on elliptically fibered Calabi-Yau manifolds, the heterotic/F-theory duality is relatively
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well understood [2 – 10]. Since heterotic compactifications are known to naturally lead to

quasi-realistic phenomenological models one should expect the same on the F-theory side.

Recently, vacua with the spectrum of the supersymmetric standard model were obtained in

heterotic compactifications on non-simply connected Calabi-Yau manifolds [11 – 16]. The

relation between heterotic string and F-theory suggests that such models can probably

also be found on the F-theory side. On the other hand, the general structure of F-theory

compactifications has certain advantages comparing to that in heterotic string theory. The

particle sector in F-theory is localized on (in general intersecting) seven-branes. It implies

that in order to study particle physics in F-theory one is likely to need to know only the local

structure of the F-theory Calabi-Yau manifold near the seven-branes. On the contrary, on

the heterotic side, there are no branes involved in the model building and it is not possible to

reduce the problem to a local consideration. Another attractive feature of F-theory, or type

IIB compactifications in general, is a recent progress in moduli srabilization (see [17, 18]

for a review) and cosmological applications (see [19, 20] for the most recent reports).

On the other hand, the particle spectrum of the F-theory compactifications is very

poorly understood and its study represents a difficult problem. It is hard to approach

this problem from the type IIB string theory side because F-theory compactifications are

intrinsically non-perturbative. Away from certain orientifold limits one cannot obtain the

spectrum in a simple way by quantizing open strings ending on the F-theory seven-branes.

The approach based on using duality with heterotic string theory is also problematic since

it is not known how the duality map acts on the heterotic spectrum. In general, it is a

complicated mathematical problem. A progress in this direction has recently been reported

in [21, 22] (see also [23]). In particular, in [22], Beasley, Heckman and Vafa constructed

a field theory on intersecting seven-branes. The approach of [22] was to start with the

maximally supersymmetric Yang-Mills theory and twist it in such a way that the theory

on the branes preserves only four supercharges. The authors of [22] showed that such a

twist is unique. Once the theory on the seven-branes is known one can study the particle

spectrum in four dimensions just like in heterotic compactifications. The analysis in [22]

relies only on the local geometry near the seven-branes. However, one can expect that it

rather adequately describes the particle sector of F-theory compactifications though global

restrictions in some cases can be important.

The goal of [22, 24] is to study GUT theories in the F-theory framework. However, in

general, it is interesting to look not only at quasi-realistic theories in the visible sector but

also at hidden sectors. One of the important questions in string theory model building is

how supersymmetry can be broken in these models. A natural attempt would be to create

a hidden sector which breaks supersymmetry and then to communicate this breaking to the

visible sector via some mediation mechanism. The most recent progress on dynamical SUSY

breaking was achieved by Intrilligator, Seiberg and Shih in [25] where it was shown that a

class of N = 1 SQCD theories has a metastable SUSY breaking vacuum at strong coupling.

This class involves theories whose matter spectrum consists of Nf massive fundamental

flavors where Nf is in the free magnetic range. It is important to understand how field

theories dynamically breaking SUSY in the infrared, like the one studied in [25], can be

embedded in realistic string compactifications with stable moduli. This has been discussed

in various contexts in [26 – 28].
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In this paper, we will discuss how the field theory model of [25], that is massive

SQCD in the free magnetic range can be obtained on the seven-branes of F-theory. More

precisely, we consider the theory on two intersecting seven-branes. The field theory action

for this system was obtained in [22]. Since we have a four-dimensional theory, the seven-

branes wrap two different complex surfaces and extend in four dimensions. In addition,

they intersect along a complex curve. All these objects, namely the two seven-branes

and the curve play an important role in our construction. The theory on one of the

seven-branes is pure N = 1, SU(Nc) Yang-Mills theory without matter. The role of the

second seven-brane is to contribute vector bundle moduli. To achieve it, we put a non-

trivial instanton on the surface which this seven-brane wraps. The matter in the (anti)-

fundamental representation of the gauge group SU(Nc) comes from the intersection curve.

In order to generate the field theory of [25] the matter has to receive a relatively small mass.

In global compactifications, there are no free constant parameters which can be used for

this purpose. The role of parameters is played by moduli fields which have to be stabilized

in any quasi-realistic compactification. In our case, the relevant moduli are the moduli

of the vector bundle. The mass of the fundamental fields localized on the intersection

curve is a function of these moduli. In fact, in a generic point in the moduli space, all

the matter fields are very massive and have to be integrated out at low energies. The

resulting theory in this case is SU(Nc) supersymmteric Yang-Mills theory. However, near

some special subvarieties in the moduli space a certain number of the fundamental fields

can become light and the resulting theory is SQCD with slightly massive flavors. If one can

control how many fundamentals become light near various subvarieties in the moduli space,

one can obtain massive SQCD in the free magnetic range. We show that this problem of

analyzing under what conditions there is light fundamental matter is exactly equivalent

to the problem of computing non-perturbative superpotentials for vector bundle moduli

in Heterotic M-theory [29 – 32]. The holomorphic function which was the superpotential

in the Heterotic M-theory context now defines the subvariety near which there are light

fundamental fields. To have an analytic control over the problem, we choose one of the

surfaces to be the rational elliptic surface dP9. This surface admits an elliptic fibration so

that we can use the spectral cover construction [5, 33] to build an instanton on it. As the

result, we can write an explicit equation in the moduli space which governs the appearance

of light fundamental fields as well as their number. More precisely, the fundamental flavors

parametrize the kernel of a certain square matrix. Therefore, the number light flavors

coincides with the amount by which the rank of this matrix drops as we move in the locus

of the zero determinant.

This paper is organized as follows. In section 2, we give a review of F-theory compacti-

fications. In particular, we review the field theory on intersecting seven-branes constructed

in [22] with focus on how the four-dimensional particle spectrum is encoded in the geometry

of the branes. In subsection 3.1, we state, following [25], the criteria that field theories with

dynamical supersymmetry breaking must satisfy. In the rest of section 3, we study how

such theories can be embedded in F-theory. In section 4, we present a concrete realization

of the ideas developed in section 3. We give an example where the holomorphic function in

the moduli space, near the zero locus of which we obtain massless fundamental matter, can
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be explicitly derived. We analyze how many fundamental flavors become light in different

regimes in the moduli space and give examples of SQCD in the free magnetic range. In

addition, we show that the mechanism of generating light fields as we move in the vector

bundle moduli space is precisely equivalent to having a Yukawa-type superpotential in the

Lagrangian. This superpotential is quadratic in the matter fields with the mass matrix

depending on the vector bundle moduli. In conclusion, we briefly summarize our results

and discuss a possible extension of this work. Finally, appendices A, B and C are devoted

to some technical details.

2. F-theory compactifications

2.1 The general structure

In this section, we will review the structure of F-theory compactifications [1 – 6]. We will

start with a general consideration and then review details of the field theory on the seven-

branes [22].

F-theory is a special class of supersymmetric type IIB string compactifications on a

manifold which we will denote Y . This compactification has a non-trivial holomorphic

axion-dilation which varies along Y . It can become singular and undergo an SL(2,Z)

monodromy along some divisor in Y which we will denote ∆. This can be interpreted as a

compactification on a Calabi-Yau manifold X which is elliptically fibered over Y with ∆

being the discriminant divisor of the the elliptic fibration over which the fibers degenerate.

The position of ∆ is interpreted as the location of the seven-branes on which the particle

sector of the compactification is localized. The gauge group is determined by the type of

the singularity along ∆. In this paper, we will be interested in compactifications to four

dimensions. Then X is a Calabi-Yau four-fold, elliptically fibered over Y , and ∆ is a surface

in Y . In many cases, ∆ is reducible and has irreducible components intersection along a

curve or points. In such situations, the particle sector can be viewed as an intersecting

brane model where the seven-branes wrap surfaces in the four-fold X and extend in the

four non-compact dimensions.

To provide a global realization of such Calabi-Yau four-folds is a rather complicated

task. However, there is a class of F-theory compactifications whose global properties are

relatively well understood. These are F-theory n-fold compactifications dual to heterotic

compactifications on an elliptically fibered Calabi-Yau (n − 1)-fold with a vector bundle

whose structure group is in E8×E8.
1 Let us give a brief review of the Calabi-Yau manifold

X is this case. This will provide us with some intuition about the general structure of the

F-theory compactifications which will be used to motivate some of the choices we make

further in the paper. For concreteness, we will discuss the case n = 4 which corresponds to

compactifications to four dimensions on both sides of the duality. In this case, the F-theory

four-fold is described by a Weierstrass model

y2 = x3 + f(z0; z1, z2)x+ g(z0; z1, z2). (2.1)

1There is additional data involved in this duality. The vector bundle on the heterotic side has to be

constructed using an irreducible spectral cover. For simplicity, we will omit these details.
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For fixed (z0; z1, z2) this equation describes an elliptic fiber. The coordinate z0 parametrizes

P
1 and f(z0; z1, z2) and g(z0; z1, z2) are polynomials of degree eight and twelve in z0 re-

spectively

f(z0; z1, z2) =

8
∑

a=0

fa(z1, z2)z
a
0 ,

g(z0; z1, z2) =

12
∑

b=0

fb(z1, z2)z
b
0. (2.2)

For fixed (z1, z2) eqs. (2.1), (2.2) describe elliptically fibered K3 surface. Indeed, the dis-

criminant of the fibration given by

∆ = 4f3 + 27g2 (2.3)

is a polynomial of degree 24 in z0 meaning that the fiber degenerates over 24 point is P
1.

Thus, X is also a K3 fibration over a complex two-dimensional manifold parametrized by

(z1, z2). This space is identified with the base B of the elliptically fibered three-fold on the

heterotic side. In other words, elliptically fibered Calabi-Yau threefold with base B on the

heterotic side is mapped by duality to the F-theory elliptically fibered Calabi-Yau four-fold

X given by a Weierstrass model (2.1) which is also K3 fibered over B. It was shown that

the middle coefficients f4(z1, z2) and g6(z1, z2) in eqs. (2.2) encode the information about

the complex structure of the heterotic threefold. The coefficients fa, a = 0, . . . , 3 and gb,

b = 0, . . . , 6 encode the information about one of the E8 vector bundles. Similarly, the

coefficients fa, a = 5, . . . , 8 and gb, b = 7, . . . , 12 describe the data of the other E8 vector

bundle. Thus, to describe one of the particle sectors (visible or hidden) one can set the data

of the second vector bundle to zero. Then f(z0; z1, z2) can be taken to be a polynomial of

degree four in z0 and g(z0; z1, z2) can be taken to be a polynomial of degree six.

Let us now review the structure of the seven-branes. It is determined by the equation

∆ = 0. The low-energy gauge group is determined by the singularity along the zero

locus of ∆ and is of the ADE-type. All possible consistent singularities were obtained

in [4] using the Tate’s algorithm. In most cases, the discriminant divisor consists of two

components intersecting along the curve z0 = 0 which is just the base of the K3-fibration

B. For example, the E7 low-energy gauge group is described by the following coefficients

f(z0; z1, z2) and g(z0; z1, z2)

f(z0; z1, z2) = f4(z1, z2)z
4
0 + f3(z1, z2)z

3
0 ,

g(z0; z1, z2) = g6(z1, z2)z
6
0 + g5(z1, z2)z

5
0 . (2.4)

The discriminant divisor can be obtained from eq. (2.3) and is given by the zero locus of

the following polynomial

∆ = z9
0(4f3

3 + 12f2
3 f4z0 + (27g2

5 + 54g5g6)z
2
0 + (4f3

4 + 27g2
6)z3

0). (2.5)

We see that the discriminant divisor has two components. One is given by z0 = 0 and the

other one given by

4f3
3 + 12f2

3 f4z0 + (27g2
5 + 54g5g6)z

2
0 + (4f3

4 + 27g2
6)z3

0 = 0. (2.6)
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These two surfaces intersect along the curve f3(z1, z2) = 0. This and all other possible

ADE-singularities were studied in detail in [4].

2.2 The theory on the intersecting seven-branes

To describe the particle spectrum of F-theory compactifications one has to study the theory

on the seven-branes. This analysis was performed in [22]. Motivated by the structure of

the seven-branes in the globally known examples of F-theory reviewed in the previous

subsection, we will concentrate on the models in which the discriminant divisor consists of

two smooth irreducible surfaces S and S ′ intersecting along a curve Σ which, for simplicity,

we will assume to be smooth and irreducible. Let the singularities along S and S ′ be of the

type GS and GS′ respectively. Both GS and GS′ are of the ADE-type. This corresponds

to GS and GS′ gauge groups on the two intersecting seven-branes. We should note that

one can also have a situation when there is no singularity along S or S ′. In this case, the

gauge group on the world-volume of the corresponding seven-brane is U(1).

To describe the theory on a seven-brane, the authors of [22] started with the maximally

supersymmetric gauge theory on R
1,3 ×C

2. Then they replaced C
2 with the component of

the discriminant surface S. The theory on R
1,3 × S has to preserve four supercharges. It

was shown in [22] that this can achieved if one twists the maximally supersymmetric theory

on R
1,3×C

2. Furthermore, it was shown in [22] that there exists a unique twists preserving

four supercharges. In a similar manner, one can analyze the theory on R
1,3 × Σ [22]. To

make the paper self-contained, we give a review of the twisting in appendices A and B.

The resulting action of the theory on the intersecting seven-branes is

I = IS + IS′ + IΣ. (2.7)

Here IS is the action localized on R
1,3 × S, IS′ is the action localized on R

1,3 × S ′ and IΣ
is the action localized on the intersection R

1,3 × Σ. The precise form of IS , IS′ and IΣ can

be found in [22]. Here, we will only review the field content.

Let us start with the fields localized on R
1,3 × S. The first set of fields is

(Aµ, ηα, η̄α̇), µ = 0, . . . 3, α = 1, 2 (2.8)

which can be viewed as the vector multiplet. Here Aµ is the four-dimensional part of the

GS -gauge field propagating on R
1,3×S. Furthermore, ηα is a positive chirality spinor from

the viewpoint of the four-dimensional Lorentz group. It also transforms in the adjoint

representation of GS (more precisely, it is a section of the adjoint bundle on R
1,3 ×S). So

far, all the fields in (2.8) depend on the coordinates on R
1,3 as well on the coordinates on

S. The additional field can be viewed as (anti)-chiral multiplets

(Am, ψ̄α̇m), (Am̄, ψαm̄) (2.9)

and

(φmn, χαmn), (φ̄m̄n̄, χ̄α̇m̄n̄), (2.10)

where m,n = 1, 2, is the holomorphic index on S. The fermions ψ̄α̇m and χαmn, in

addition to being sections of the adjoint bundle, transform as sections of Ω
(1,0)

∂̄
and Ω

(2,0)

∂̄

– 6 –
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respectively. All field in eqs. (2.9) and (2.10) depend on the coordinates on R
1,3 as well

on the coordinates on S. To obtain the low-energy field theory in four-dimensions we

compactify the action IS on S and keep only the zero modes. To preserve supersymmetry,

we have to satisfy some BPS conditions on S. These conditions are as follows [22]

Fmn = Fm̄n̄ = 0,

∂̄Amφ = 0,

ω ∧ F +
i

2
[φ, φ̄] = 0. (2.11)

Here F is the field strength constructed out of (Am, Am̄). It can be viewed as a curvature of

some vector bundle on S. Furthermore, φ = φmnds
mdsn is an adjoint-valued two-form on

S, ∂̄Am is the antiholomorphic covariant derivative and ω is the Kahler form. For simplicity,

we will consider vacua with φ = 0. Then the equations for F become

Fmn = 0, Fm̄n̄ = 0, gmn̄Fmn̄ = 0 (2.12)

which are the Hermitian Yang-Mills equations on S. This means that F is the curvature

on a stable holomorphic vector bundle on S. Let HS be the structure group of this vector

bundle. Then in four dimensions GS is broken to ΓS which is the commutant of HS in GS .

Thus, after compactifying on S the action IS is the action of the N = 1 supersymmetric

gauge theory with gauge group ΓS coupled to some matter. To obtain the matter content,

we first decompose adGS into irreducible representations of ΓS ×HS

adGS =
⊕

j

τj ⊗ Tj. (2.13)

Since the light fermionic matter is given by the zero modes of the Dirac operator on S it

follows that the fermionic spectrum is given by

η̄α̇,τj
∈ H0(S, Tj),

ψα,τj
∈ H1(S, Tj),

χ̄α̇,τj
∈ H2(S, Tj), (2.14)

where Tj is the vector bundle on S whose sections transform in the representation Tj of the

structure group HS . The upper index in the cohomology groups H i is due to the fact that

the fermions are twisted. Of course, the spectrum in eq. (2.14) has to be supplemented by

the complex conjugate fields. Note that the term in eq. (2.13) corresponding to τj = 1, Tj =

adHS counts the vector bundle moduli. As the result, the chiral spectrum is given by [22]

H0(S, T∨
j )∨ ⊕H1(S, Tj) ⊕H2(S, T∨

j )∨ (2.15)

and the antichiral spectrum is given by [22]

H0(S, Tj) ⊕H1(S, T∨
j )∨ ⊕H2(S, Tj), (2.16)

– 7 –
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where the symbol ∨ stands for the dual bundle or vector space. The difference between

the chiral and antichiral matter in the representation τj of ΓS is given by the difference of

the Euler characteristics

nτj
− nτ∗

j
= χ(S,T ∨

j ) − χ(S,Tj) = −
∫

c1(Tj)c1(S), (2.17)

where c1(Tj) and c1(S) are the first Chern classes of Tj and the holomorphic tangent bundle

of S respectively.

The analysis of the theory of the seven-branes wrapping S ′ is identical to the one

presented above.

Let us now discuss the theory localized on R
1,3 × Σ. It was also obtained in [22] by

twisting the maximally supersymmetric gauge theory in six dimensions. The result is that

on the intersection one gets two chiral multiplets

(σ, λα), (σc, λc
α), (2.18)

where all these fields transform in representation of GS × GS′ . An additional important

feature is that the fields in (2.18) are twisted and transform as sections of K
1/2
Σ , where KΣ

is the canonical bundle on Σ. Note that since Σ is a Riemann surface it is a spin manifold

and the square root of the canonical bundle exists. To obtain which representations of

GS × GS′ are allowed one needs to know how the singularity is enhanced along Σ. Let

the singularity be enhanced to another ADE-type group GΣ ⊃ GS × GS′ . To obtain the

allowed representations of GS ×GS′ we decompose adGΣ as

adGΣ = adGS ⊕ adGS′ ⊕
⊕

j

(Uj ⊗ U ′
j). (2.19)

The bifundamentals (σ, λα), (σc, λc
α) transform in the representations of GS × GS′ given

by the non-adjoint summand
⊕

j(Uj ⊗U ′
j) in (2.19). To obtain the low-energy field theory

in four dimension we compactify IΣ on Σ. As was discussed above, we can put non-trivial

instantons on both S and S ′ with structure groups HS and HS′ respectively. Then the

matter fields originating from the intersection multiplets (2.18) will transform in represen-

tations of ΓS × ΓS′ , where ΓS is the commutant of HS in GS and ΓS′ is the commutant of

HS′ in GS′ . More precisely, we decompose

U ⊗ U ′ =
⊕

k

(νk,Vk), (2.20)

where νk is a representation of Γ = ΓS × ΓS′ and Vk is a representation of H = HS ×HS′ .

The chiral fermions in the representation νk correspond to the zero modes of the Dirac

operator on Σ. Thus,

λα,νk
∈ H0(Σ,K

1/2
Σ ⊗ Vk), (2.21)

λc
α,νk

∈ H0(Σ,K
1/2
Σ ⊗ V ∨

k ) ≃ H1(Σ,K
1/2
Σ ⊗ Vk)

∨, (2.22)

where in the last step in (2.22) we have used the Serre duality on Σ and Vk is the vector

bundle whose sections transform in the representation Vk of H. The additional factor K
1/2
Σ

– 8 –
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in eqs. (2.21) and (2.22) is due to the fact that the fermions are twisted. The difference

between chiral and antichiral matter in the representation νk of the low-energy gauge group

Γ is given by the Euler characteristic

nνk
− nν∗

k
= χ(Σ,K

1/2
Σ ⊗ Vk). (2.23)

This concludes our review of the theory on the intersecting seven-branes. Additional details

can be found in [22].

3. Dynamical SUSY breaking

3.1 Field theory requirements

In this subsection, we will give a brief review of dynamical supersymmtery breaking in

N = 1 SQCD following [25]. The goal is to formulate the field theory requirements which

we will intend to realize on F-theory seven-branes. We consider N = 1,SU(Nc) SQCD

with Nf fundamental flavors Q, Q̃ in the free magnetic range [34, 35]

Nc + 1 ≤ Nf <
3

2
Nc. (3.1)

The flavors are taken to be massive and have a quadratic superpotential

W = TrmM, (3.2)

where

M = Qf · Q̃g, f, q = 1, . . . Nf . (3.3)

This theory is known to have Nc supersymmetric vacua with

〈M〉 =
(

Λ3Nc−Nf detm
)1/Ncm−1, (3.4)

where Λ is the strong coupling scale. It was shown in [25] that, in addition, this theory

has a metastable SUSY breaking vacuum. This was established by studying the Seiberg

dual [34, 35] of the original theory. The Seiberg dual theory is SU(Nf −Nc) SQCD with

Nf fundamentals q, q̃ and N2
f extra singlets Φg

f . It has a quadratic leading order Kahler

potential and the superpotential given by (up to some field redefinition)

Wdual = hTrqΦq̃ − hµ2TrΦ, (3.5)

where µ =
√
mΛ and h is a dimensionless parameter (see [25] for additional details). For

simplicity, we have assumed that all eigenvalues of the mass matrix are equal. This theory

breaks supersymmetry by a rank condition mechanism since F-flatness for Φ requires that

q̃fqg = µ2δf
g , (3.6)

which cannot be satisfied because the number of colors of the dual theory Nf −Nc is less

than the number of flavors Nf . However, it was shown in [25] that there exists a metastable

SUSY breaking vacuum with

Vmin = Nc

∣

∣h2µ4
∣

∣. (3.7)
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This result can be well-trusted in the regime

ǫ ∼
√

∣

∣

∣

m

Λ

∣

∣

∣≪ 1, (3.8)

These results were also generalized in [25] for SQCD with gauge groups SO(Nc) and Sp(Nc).

In this paper, we will concentrate on the SU(Nc) theories.

3.2 Embedding in F-theory compactifications

In the rest of the section, we will discuss how the field theory reviewed above can be obtained

on the intersecting seven-branes in F-theory. We would like to build a massive SU(Nc)

SQCD with fundamental matter so that the requirement (3.1) is satisfied. In addition,

the fundamental fields have to be very light. As we discussed in the previous section, the

charged matter is in one-to-one correspondence with various bundle cohomology groups.

The dimensions of bundle cohomology groups are not topological invariants. Thus, they

depend on the location in the vector bundle and complex structure moduli spaces. As we

move in the moduli space the dimensions might jump meaning that some extra charged

matter fields might become light. Physically, this means that a certain number of matter

fields have a quadratic superpotential with the mass matrix depending on the moduli of

the vector bundle on the complex structure of the F-theory four-fold X. Somewhere in

the moduli space, some eigenvalues of the mass matrix can vanish increasing the number

of the massless fields. If the difference between the chiral and anti-chiral fermions in some

representation of the low-energy gauge group Γ is non-zero then a certain number of matter

fields will always stay massless since they are protected by the topological invariants (2.17)

or (2.23). Hence, to build SQCD, we are interested in F-theory models with vanishing

topological invariants (2.17) and (2.23). Furthermore, we are interested in models where at

a generic point in the moduli space all matter is massive. However, near some subvarieties

the mass of some fields has to be become light which is also a requirement to generate

the field theory from the previous subsection. Note that moduli are dynamical fields in

the four-dimensional low-energy fields theory. However, eventually, we are interested in

compactifications in which all the modul are stabilized. Thus, we will assume that it is

indeed the case and will view them as parameters. We will not discuss the issues of moduli

stabilization in this paper.

Let us point out that from a conceptual viewpoint engineering of SQCD with mas-

sive flavors in the context of F-theory is not much different from that in the case of flat

non-compact branes studied in [36 – 41]. In both cases one has to take a certain number of

intersecting branes and by using open string moduli engineer a mass term for the charged

matter fields. In the context of [36 – 41] the corresponding open string moduli are brane sep-

arations and in the context of F-theory the open string moduli are the vector bundle moduli.

However, from a technical viewpoint our case is, clearly, more complicated. Since we are in-

terested in quasi-realistic particle physics compactifications, the seven-branes have to wrap

non-trivial compact four-cycles. In addition, these four-cycles are endowed with a non-

trivial vector bundle. Since the mass term for the fundamental fields is controlled by the
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vector bundle moduli to understand the structure of the quadratic superpotential one has

to take into a account the geometric properties of the four-cycle and of the vector bundle.

Below we will discuss a class of F-theory models which can lead to SQCD on the

intersecting seven-branes with requirements formulated in the previous subsection. In the

rest of the section, we will give a general consideration. In the next section we will apply

the ideas developed in this section for a concrete example of geometry of the seven-branes.

3.3 The spectrum localized on the surfaces

First, we will consider the sector of the theory that comes from the surfaces S and S ′.

Let V be an instanton on S with structure group HS and V ′ be an instanton on S ′ with

structure group HS′. If GS and GS′ are the singularities along S and S ′, the low-energy

gauge group is ΓS × ΓS′ with ΓS(ΓS′) being the commutant of HS(HS′) in GS(GS′). At

this point let us simplify our model. For concreteness, let us choose the singularity along

both S and S ′ to be of the A-type. We will assume that one of the factors in ΓS ×ΓS′, say

ΓS , is trivial as far as the gauge theory dynamics is concerned. There are several natural

ways to achieve it. The simplest way is to put an instanton on S with structure group

GS . This way we find that ΓS is completely broken. We also do not obtain any massless

matter in the S-sector except for the vector bundle moduli. One more way is to take ΓS

to be U(1). Since U(1) is infrared free it does not effect the strong coupling dynamics of

any non-Abelian factor and, hence, can be ignored. Another way is to assume that the

volume of S is much bigger than the volume of S ′. Then the coupling constant of ΓS is

parametrically much smaller than the coupling constant of ΓS′ . In this case, ΓS can be

viewed as an (approximate) global symmetry. In this paper, we will concentrate on the

first possibility. That is, we will put an instanton on S with structure group GS which we

will denote SU(n)

HS = GS = SU(n). (3.9)

In principle, one can keep the S ′-sector non-trivial and generate SQCD with the prod-

uct gauge group which also might break SUSY in the infrared [39, 42 – 44]. However, we

will simplify our model and concentrate on the theory of [25] reviewed in the previous

subsection.

Furthermore, we will put the trivial instanton on the other surface S ′. Then the gauge

group ΓS′ equals GS′ which we will denote SU(Nc). That is,

ΓS′ = GS′ = SU(Nc). (3.10)

Let us study the spectrum of the theory. In the S ′-sector we obtain N = 1, SU(Nc)

supersymmetric gauge theory without any matter. In the S-sector the only fields are the

moduli of V , which we view as parameters.

Let us now explain why we have chosen to put the trivial instanton on S ′. For this we

have to see how the spectrum of the theory in the S ′-sector gets modified if the instanton

V ′ on S ′ is non-trivial. Let us specify the low-energy gauge group ΓS′ to be SU(Nc) as

before. Since in the presence of a non-trivial vector bundle on S ′ it does not coincide

with GS′ , we will denote GS′ = SU(N), N > Nc. The structure group of the vector

– 11 –
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bundle is then SU(N −Nc). Note that, to be precise, the low-energy gauge group in this

case is SU(Nc) × U(1) but as we discussed the U(1)-factor is irrelevant for our purposes

and will be ignored. The spectrum of the theory in the S ′-sector consists of the SU(Nc)

vector multiplet, the moduli of the vector bundle V ′ that we put on S ′ and the matter

fields charged under SU(Nc). According to our consideration in the previous section, in

order to obtain the matter content, we have to decompose the adjoint representation of

SU(N) under SU(Nc) × SU(N − Nc). The fields charged under SU(Nc) are contained in

the following terms of the decomposition (ignoring the U(1)-charges)

(Nc,N − Nc) ⊕ (Nc,N − Nc). (3.11)

Thus, the matter charged under ΓS′ = SU(Nc) corresponds to the cohomology groups with

coefficients in V ′ and V ′∨. From the previous section it follows that the number of fields

in the fundamental representation of ΓS is2

h0(S ′, V ′) + h1(S ′, V ′∨) + h2(S ′, V ′) (3.12)

whereas the number of the antifundamental fields is

h0(S ′, V ′∨) + h1(S ′, V ′) + h2(S ′, V ′∨). (3.13)

Since V ′ is a stable bundle, h0(S ′, V ′) = h0(S ′, V ′∨) = 0. Furthermore, using the Serre

duality we have

h2(S ′, V ′∨) = h0(S ′, V ′ ⊗KS′), (3.14)

where KS′ is the canonical bundle on S ′. In many cases V ′⊗KS′ also does not have sections

and the right hand side in (3.14) vanishes. For instance, this is the case if S ′ is one of del

Pezzo surfaces [22]. We will assume that h2(S ′, V ′) = h2(S ′, V ′∨) = 0. Then the matter

charged under ΓS′ = SU(Nc) receives a contribution only from h1(S ′, V ′) and h1(S ′, V ′∨).

It then follows that it is given by the Euler characteristics

h1(S ′, V ′) = −χ(S ′, V ′) (3.15)

and

h1(S ′, V ′∨) = −χ(S ′, V ′∨). (3.16)

In other words, the number of (anti)-fundamentals is given by topological invariants and

protected from becoming massive unless χ(S ′, V ′) = χ(S ′, V ′∨) = 0. This explains why we

did not put a non-trivial instanton on the same seven-brane S ′ which carries the SU(Nc)

gauge theory. Putting a non-trivial vector bundle on S ′ would generate (anti)-fundamental

matter of the gauge group SU(Nc). This matter would be topologically protected from

becoming massive unless χ(S ′, V ′) = χ(S ′, V ′∨) = 0 which is a strong restriction. Hence,

it would be difficult to generate SQCD with massive flavors in this case.

To summarize, the spectrum of the theory localized on the surfaces is pure SU(Nc)

gauge theory with some number of vector bundle moduli. The fundamental matter charged

under SU(Nc) comes from the sector localized on the intersection curve Σ which we have

to discuss next.

2Throughout the paper we denote by H
i cohomology groups and by h

i their dimension.
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3.4 The spectrum localized on the curve

Now let us discuss the theory in the Σ-sector. First, we need to specify the enhanced

singularity along Σ. We chose the singularities along S, S ′ and Σ to be of the A-type.

In notation of the previous subsection, the matter fields on Σ, which we denote as (σ, λα)

and (σc, λc
α), transform as the (anti)-fundamentals of the group SU(n) × SU(Nc). When

we compactify to four dimensions, the SU(Nc) factor survives as the gauge symmetry and

the SU(n) factor is completely broken by the vector bundle. Therefore, the massless four-

dimensional fields transform as (anti)-fundamentals of SU(Nc). Indeed, the non-adjoint

summand in eq. (2.19) is our case is

(Nc,n) ⊕ (Nc,n) (3.17)

The fields corresponding to the first terms are (σ, λα) and the fields corresponding to the

second term are (σc, λc
α). When we compactify on Σ, the first entry in both terms in (3.17)

labels the representation of the low-energy gauge group SU(Nc) and the second entry

specifies the vector bundle. Recalling that the fields on the intersection are twisted by the

square root of the canonical bundle, we obtain the following matter content. We have the

multiplets (Q̃, λ̃α) whose number is determined by h0(Σ,K
1/2
Σ ⊗ V |Σ) and the multiplets

(Q,λα) whose number is determined by h1(Σ,K
1/2
Σ ⊗ V |Σ) (or h0(Σ,K

1/2
Σ ⊗ V ∨|Σ)). Here

V |Σ is V restricted to Σ. The fields (Q,λα) transform in the fundamental representation of

SU(Nc) and the fields (Q̃, λ̃α) transform in the antifundamental representation of SU(Nc).

To generate SQCD, we need the number of fundamental and antifundamental multiplets

to be the same. This means that the Euler characteristic

χ(Σ,K
1/2
Σ ⊗ V |Σ) = h0(Σ,K

1/2
Σ ⊗ V |Σ) − h1(Σ,K

1/2
Σ ⊗ V |Σ) (3.18)

has to vanish. From the Riemann-Roch theorem (see, for example, [47]) it follows that

χ(Σ,K
1/2
Σ ⊗ V |Σ) = (1 − g)c0(K

1/2
Σ ⊗ V |Σ) + c1(K

1/2
Σ ⊗ V |Σ)

= (1 − g)c0(V |Σ) + c1(V |Σ) + c0(V |Σ)c1(K
1/2
Σ ), (3.19)

where g is the genus of Σ. In this paper, we will consider the case

Σ ≃ P
1. (3.20)

Then, taking into account that

K
1/2
Σ ≃ O(−1) (3.21)

it follows from (3.19) that χ(Σ,K
1/2
Σ ⊗ V |Σ) = 0 if

c1(V |Σ) = 0. (3.22)

This condition is trivially satisfied if V has structure group SU(n).

Thus, the question of analyzing how to obtain SQCD with appropriate number of light

fields is reduced to analyzing under what conditions the vector bundle

O(−1) ⊗ V |Σ (3.23)
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has global holomorphic sections. This problem is known to arise in a different context,

namely, under what conditions the non-perturbative superpotential due to a string (open

membrane) instanton in heterotic M-theory does or does not vanish [29 – 32]. In that con-

text, Σ is an isolated sphere inside the Calabi-Yau threefold on which the E8×E8 heterotic

string theory is compactified, V is a vector bundle on the threefold and h0(Σ,O(−1)⊗V |Σ)

counts the number of the zero modes of the Dirac operator coupled to the world-sheet

fermions on Σ. The existence or non-existence of the global sections of O(−1) ⊗ V |Σ de-

pends on the moduli of V and on the complex structure of the Calabi-Yau threefold. This

problem was analyzed in detail for some geometries in [31, 32] where the dependence of the

non-perturbative superpotential on the vector bundle moduli was explicitly calculated. In

the next section we will specify the details of our examples so that the set-up is reduced

to the one studied in [31, 32]. This will allow us to calculate the locus in the moduli space

near which the right number of the fundamental fields becomes light, realizing this way

SQCD in the free magnetic range.

To finish this section, let us discuss the quadratic superpotential for the (anti)-

fundamental fields Q and Q̃. As was shown in [22], the action IΣ contains terms which

give rise to the superpotential. This superpotential can be written as follows. Let ωQ be

the element of H0(Σ,K
1/2
Σ ⊗ V ∨|Σ) corresponding to Q. That is, the world-volume field σ

is written as

σ =
∑

Q · ωQ, (3.24)

where the sum is over all zero modes of σ. Similarly, let ωQ̃ be the element in H0(Σ,K
1/2
Σ ⊗

V |Σ) corresponding to Q̃. Note that

ωQ · ωQ̃ ∈ H0(Σ,KΣ ⊗ (V ⊗ V ∨)|Σ) (3.25)

At last, let ωφ be the differential form corresponding to the vector bundle modulus φ. It

is a standard result that3

ωφ ∈ H1(S, EndV ) = H1(S, V ⊗ V ∨) (3.26)

If we restrict eq. (3.26) to Σ and use the Serre dulity

H1(Σ, (V ⊗ V ∨)|Σ) ≃ H0(Σ,K
1/2
Σ ⊗ (V ⊗ V ∨)|Σ)∨ (3.27)

we that one can pair up elements in (3.25) and (3.27) to obtain a complex number since

they parametrize the spaces dual to each other. That is, we have the following natural map

H0(Σ,K
1/2
Σ ⊗ V |Σ) ⊗H1(Σ, (V ⊗ V ∨)|Σ) ⊗H0(Σ,K

1/2
Σ ⊗ V ∨|Σ) → C. (3.28)

Explicitly, it can be done as follows. We have

ωQ · ωQ̃ ∈ H0(Σ,KΣ ⊗ (V ⊗ V ∨)|Σ) ≃ H
(1,0)

∂̄
(Σ, (V ⊗ V ∨)|Σ) (3.29)

3See, for example, section 15.7.3 of [45].

– 14 –



J
H
E
P
0
9
(
2
0
0
8
)
1
3
4

Hence, we can view ωQ · ωQ̃ as a (1, 0) differential form on Σ. On the other hand,

ωφ ∈ H1(Σ, (V ⊗ V ∨)|Σ) ≃ H
(0,1)

∂̄
(Σ, (V ⊗ V ∨)|Σ). (3.30)

Hence, we can view ωφ as a (0, 1)-differential form on Σ. Thus, the superpotential can be

written as

W = λφTr(Q · Q̃), (3.31)

where

λ =

∫

Σ
ωQ · ωQ̃ ∧ ωφ, (3.32)

where we suppressed the flavor indices.

3.5 The summary of the model

In this small subsection, we will summarize the ingredients necessary to build SQCD

found above. The various pieces of the spectrum come from the three different sources,

the surface S ′, the surface S and the intersection curve Σ. More precisely the role of each

of them is as follows.

• The surface S ′ contributes N = 1, SU(Nc) gauge theory.

• The surface S contributes vector bundle moduli.

• The intersection curve Σ contributes matter fields Q and Q̃ in the fundamental and

antifundamental representations of the gauge group SU(Nc). The mass of these fields

is controlled by the vector bundle moduli through the superpotential (3.31).

4. An F-theory realization of SQCD in the free magnetic range

4.1 The geometric data

In this section, we will give a realization of the ideas developed in the previous section.

From the above consideration it follows that the details of the geometry of the surface S ′ are

irrelevant. The role of it is to produce the SU(Nc) vector multiplet. Therefore, we only need

to specify the surface S and the curve Σ ⊂ S. Motivated by the heterotic-F-theory duality

it is reasonable to choose S to be the base of an elliptically fibered Calabi-Yau threefold.

We will choose S to be rational elliptic surface dP9 which is known to a be a possible base

for a Calabi-Yau threefold. Various properties of dP9 can be found, for example, in [46].

It is worth pointing out that elliptically fibered over dP9 Calabi-Yau threefolds as well as

their quotient over a discrete group are often used in GUT and Standard Model heterotic

compactifications. In particular, such manifolds were used in constructing a heterotic

standard model in [11 – 16].

Let us present here some facts about dP9. The surface dP9 is obtained from P
2 by blow-

ing up nine distinct points. Thus, the basis of effective curves in dP9 can be chosen to be

{ℓ, e1, . . . e9}, (4.1)
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where ℓ is the hyperplane divisor inherited from P
2 and e1, . . . e9 are the nine exceptional

divisors each isomorphic to P
1. However, it is more convenient to work with a different

basis. The surface dP9 admits an elliptic fibration over P
1. We identify the base of this

fibration, σ, with one of the exceptional curves, say e1. Let π be the projection map

π : dP9 → σ = e1. (4.2)

A more convenient basis is

{F, e1, . . . e9}, (4.3)

where F is the class of the elliptic fiber. In terms of the curves in the basis (4.1) it is given by

F = 3ℓ−
9
∑

i=1

ei. (4.4)

The intersection numbers of the curves in (4.3) are given by

ei · ej = −δij , ei · F = 1. (4.5)

The Chern classes of dP9 are given by

c1(dP9) = F, c2(dP9) = 12. (4.6)

Being an elliptic fibration, dP9 can be described by the Weierstrass equation

y2z = x3 + fxz2 + gz3, (4.7)

where f and g are polynomials on the base σ ≃ P
1. More precisely, f is a polynomial of

degree four and g is a polynomial of degree six. Furthermore, z, x and y are sections of

the following line bundles [5]

z ∈ H0(dP9,OdP9
(3σ)), x ∈ H0(dP9,OdP9

(3σ + 2F )), y ∈ H0(dP9,OdP9
(3σ + 3F )).

(4.8)

One can see that each term in eq (4.7) is a section of the same line bundle.

After having specified the surface S, we need to specify a genus zero curve Σ ∈ S. We

will choose it to be the base of dP9, σ. That is,

Σ = σ ≃ P
1. (4.9)

The next ingredient which needs to be specified is an SU(n) instanton V on dP9. Since

dP9 is elliptically fibered we can use the spectral cover construction [5, 33]. According

to this construction, an SU(n) vector bundle on elliptic dP9 (or any elliptically fibered

manifold) can be obtained from the spectral data

(C,N ), (4.10)

where the spectral cover C is an n-fold cover of the base σ (in our case C is a Riemann

surface) and N is a line bundle on C. The corresponding SU(n) vector bundle V can be
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obtained from the spectral data (4.10) by a Fourier-Mukai transformation [5, 33]. We will

choose the homology class of the spectral cover to be of the form

C = nσ + kF. (4.11)

The coefficient n determines the rank of the vector bundle V and the coefficient k can be

shown to be the second Chern class (the instanton number) of V . In order to make sure

that the bundle V is stable (that is, admits a connection solving the BPS equations (2.12))

the homology class of the spectral cover has to contain irreducible curves. One can show

that this is the case if the following condition is satisfied

k ≥ n. (4.12)

Let us work out some properties of C. As we mentioned before, C is simply a Riemann

surface. For future reference, let us calculate its genus gC . It can be obtained using the

adjunction and Riemann-Hurwitz formulas (see for example [47]). From the adjunction

formula it follows that the canonical bundle of C is

KC =
(

KdP9
⊗OdP9

(C)
)

|C . (4.13)

Therefore the degree of the canonical bundle of C is given by

degKC = KdP9
· C + C · C. (4.14)

Knowing the degree of the canonical bundle we can obtain the genus by the Riemann-

Hurwitz formula

2gC − 2 = degKC . (4.15)

Then from eqs. (4.5), (4.6), (4.11), (4.14) and (4.15) it follows that

gC = nk − (n− 1)(n + 2)

2
. (4.16)

Now we will calculate how many parameters the linear system of C has. The number of

projective parameters of the spectral cover is given by

h0(dP9,OdP9
(C)). (4.17)

This number can be calculated using a simple Leray spectral sequence according to which

h0(dP9,OdP9
(C)) = h0(σ, π∗OdP9

(C)) = h0(σ, π∗OdP9
(nσ + kF )). (4.18)

The direct image π∗OdP9
(nσ+ kF ) was computed in appendix C of [32] by induction in n.

Here we just quote the result

π∗OdP9
(nσ + kF ) = O(k) ⊕

n
⊕

i=2

O(k − i). (4.19)
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Note that for k ≥ n all entries in the right hand side of (4.19) are non-negative. Since

h0(P1,O(i)) = i+ 1 for i ≥ 0, it follows that

h0(dP9,OdP9
(C)) = (k + 1) + (k − 1) + · · · + (k − n+ 1) = nk − (n+ 1)(n − 2)

2
. (4.20)

The parameters of the spectral cover form a projective space P
h0(dP9,OdP9

(C))−1 [48, 49].

Later, we will introduce an explicit coordinate parametrization of this space.

Now we move on to discussing the line bundle N . An arbitrary choice of N on the

spectral cover C will lead to a vector bundle V on dP9 with structure group U(n). The

condition under which N produces an SU(n) rather than U(n) vector bundle was derived

in [5]. It can be formulated as follows: the degree of N has to be related to the genus of

the spectral cover as follows

degN = gC − 1 + n. (4.21)

The moduli space of line bundles N is the Jacobian JgC ≃
(

T
2
)gC . Thus, the moduli space

of the vector bundle V is a Jacobian bundle over the projective space P
h0(dP9,OdP9

(C))−1.

Unfortunately, it is very difficult to introduce an explicit parametrization of the Jacobian

and have an analytic control over it. Therefore, at this step, we will simplify our analysis.

We will fix the moduli of N at some particular values and study how h0(σ,K
1/2
σ ⊗ V |σ)

behaves only as we move in the projective space of the parameters of the spectral cover.

We will fix the line bundles N on C as follows. We will choose N to be the restriction of

the following discrete line bundles on dP9.

N = OdP9

(

n

(

1

2
+ λ

)

σ +

(

1

2
− λ

)

kF +

(

1

2
+ nλ

)

F

)

, (4.22)

where the discrete parameter λ has to be chosen in such a way that the right hand side

in (4.22) is an integral class on dP9. For example, if n is odd one always gets an integral

class if λ is half-integer. Starting this point, we will always mean by N a line bundle on

dP9 of the form (4.22) and the corresponding spectral line bundle on C we will denote as

N|C . It is straightforward to check using eqs. (4.11), (4.5) and (4.13) that the degree of

N|C is indeed given by eq. (4.21) independent of λ.

To summarize, we will consider vector bundles V on dP9 constructed using the

spectral data (C, N|C), where C is given by eq. (4.11) and N|C is obtained by restriction

of (4.22) to C.

4.2 The matter localized on the curve

In this subsection, we will consider the matter localized on the curve σ. As was discussed

before, it is determined by the cohomology groups

H0(σ,O(−1) ⊗ V |σ), H1(σ,O(−1) ⊗ V |σ), (4.23)

where we have used the fact that K
1/2
σ = O(−1). The analysis in this subsection will

be similar to the one in [31, 32] though the context is different. Our goal is to derive

the equation in the moduli space of C along the zero locus of which one gets massless

fundamental fields whereas away from this locus all the fundamental fields are massive.
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The bundle V |σ can be obtained from the spectral data (C,N|C) as follows [31, 32]

V |σ = πCN|C , (4.24)

where πC : C → σ is the n-fold cover map. Then from a Leray spectral sequence it follows

that

h0(σ,O(−1) ⊗ V |σ) = h0(C, (N ⊗OdP9
(−F ))|C). (4.25)

Denote

N (−F ) = N ⊗OdP9
(−F ). (4.26)

Thus, we have to study under what conditions h0(C,N (−F )|C) vanishes. Note that the

Euler characteristic of N (−F )|C vanishes. Indeed, from the Riemann-Roch formula

χ(C,N (−F )|C) = d− gC + 1, (4.27)

where by d we denoted the degree of the line bundle N (−F )|C . Since the degree of N|C
is gC − 1 + n it follows that

d = gC − 1 (4.28)

and, hence, the Euler characteristic in (4.26) vanishes.

The dimension h0(C,N (−F )|C) depends on the parameters of C. As we move in the

projective space of these parameters, h0(C,N (−F )|C) might jump. We are interested in

examples where h0((C,N (−F )|C) is zero at a generic point in the moduli space and jumps

along some subvariety. Let us now show how to derive the equation of this subvariety.

First, we will give some general discussion and then give a specific example.

Consider the following short exact sequence on dP9

0 → E ⊗OdP9
(−D)

fD→ E
r→ E|D → 0. (4.29)

Here E is an arbitrary holomorphic vector bundle on dP9 and D is a divisor in it. The

map r is just the restriction map. The map fD is a multiplication by a section of OdP9
(D)

which vanishes precisely on D. This sequence can be understood as follows. Let e be any

section of E. Let us restrict e to D and find the kernel of the restriction map. The kernel

consists of such sections e which vanish on D. Such sections can be written as e = fDe
′

for some e′. It is clear that e′ transforms with transition functions of E⊗OdP9
(−D). This

means that the kernel of r is E ⊗OdP9
(−D). For our purposes, we choose

E = N (−F ), D = C. (4.30)

The sequence (4.29) becomes

0 → N (−F − C)
fC→ N (−F )

r→ N (−F )|C → 0, (4.31)

where by N (−F − C) we simply denoted N (−F ) ⊗ OdP9
(−C). From here we obtain the

corresponding long exact sequence of the cohomology groups

0 → H0(dP9,N (−F − C)) → H0(dP9,N (−F )) → H0(C,N (−F )|C)

→ H1(dP9,N (−F − C)) → H1(dP9,N (−F )) → H1(C,N (−F )|C) → . . . . (4.32)
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Note that the cohomology group H0(C,N (−F )|C) is exactly the object we are interested

in. Also note that if h0(dP9,N (−F )) is non-zero, h0(C,N (−F )|C) cannot vanish. Hence,

in this case we always have massless fundamental matter. Therefore, we will study the case

when h0(dP9,N (−F )) = 0. Then the sequence (4.32) simplifies and becomes

0 → H0(C,N (−F )|C) →W1
fC→W2 → . . . , (4.33)

where W1 and W2 are the following vector spaces

W1 = H1(dP9,N (−F − C)) (4.34)

and

W2 = H1(dP9,N (−F )). (4.35)

Both W1 and W2 are finite-dimensional vector spaces. The map fC in (4.33) between them

is a multiplication by a section of OdP9
(C). It depends on the parameters of C. This map

can be organized as a finite-dimensional matrix. Thus, h0(C,N (−F )|C) is non-zero if the

matrix fC has a non-trivial kernel. We will consider the case when dimW1 = dimW2. Then

fC is a square matrix. Therefore, h0(C,N (−F )|C) is non-zero if and only if

detfC = 0. (4.36)

Away from the locus given by eq. (4.36) all fundamental fields Q and Q̃ are very massive

and the theory on the intersecting seven-branes is just pure SU(Nc) supersymmetric Yang-

Mills theory. Near the locus (4.36) some number of the fundamental matter fields becomes

light and the theory is SQCD with massive matter. This equation alone does not tell us

exactly how many fundamental fields we obtain. We will discuss it later in this section.

Now we will present an example of computation of detfC [31, 32].

Example. In this example, we will choose a vector bundle V to have the structure group

SU(3). We will specify the second Chern class of V to be k = 5. In addition, we choose

the discrete parameter λ in (4.22) to be λ = 3
2 . Then we obtain

C = 3σ + 5F,

N (−F ) = OdP9
(6σ − F ),

N (−F − C) = OdP9
(3σ − 6F ). (4.37)

Let us start with the explicit parametrization of the spectral cover. The number of the pro-

jective parameters is given by eq. (4.20). In our case it is 13. Since from eq. (4.19) we have

π∗OdP9
(3σ + 5F ) = O(5) ⊕O(3) ⊕O(2), (4.38)

we can write the equation for C as follows

C = a5z + a3x+ a2y, (4.39)

where z, x, y are the variables in the Weierstrass equation (4.7), (4.8). The coefficients ak

are ak = π∗Ak, where Ak is a section of H0(σ,O(k)), that is a polynomial of degree k on
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σ ≃ P
1. Thus, if (u, v) are projective coordinates on σ then we have the following explicit

parametrization of Ak

A5 = ψ1u
5 + ψ2u

4v + ψ3u
3v2 + ψ4u

2v3 + ψ5uv
4 + ψ6v

5,

A3 = φ1u
3 + φ2u

2v + φ3uv
2 + φ4v

3,

A2 = χ1u
2 + χ2uv + χ3v

3, (4.40)

where {ψa, φb, χc} are the 13 projective parameters of the spectral cover. The actual

equation of C in dP9 is obtained by setting (4.39) to zero. This equation is invariant under

rescaling of all {ψa, φb, χc} by a non-zero complex number. Therefore, only 12 parameters

are independent. They parametrize the projective space P
12.

In the next step, we need to parametrize the vector spaces W1 and W2. The idea is to

push W1 and W2 down to the base σ ≃ P
1 where one can use a paramerization in terms of

polynomials. From a Leray spectral sequence it follows that

W1 = H1(dP9, N(−F − C)) ≃ H1(σ, π∗N (−F − C)). (4.41)

To obtain this result we used the fact that R1π∗N (−F − C) = 0 which follows from the

explicit form of N (−F −C) in eq. (4.37). Indeed, by definition, the sheaf R1π∗N (−F −C)

is generated at each point p on σ by the cohomology of the fiber H1(Fp,N (−F − C)|Fp),

where Fp is the elliptic fiber over p. From eq. (4.37) and intersection numbers (4.5) it

follows that the degree of N (−F − C)|Fp is 3 which is positive. Then it follows from the

Kodaira vanishing theorem [47] that H1(Fp,N (−F − C)|Fp) = 0. Thus, R1π∗N (−F − C)

is the zero sheaf. To continue, from eqs. (4.37) and (4.19) we find that

π∗N (−F − C) = O(−6) ⊕O(−8) ⊕O(−9). (4.42)

Since h1(P1,O(−i)) = i− 1 for positive i, we find that the dimension of W1 is

dimW1 = 5 + 7 + 8 = 20. (4.43)

Moreover, the decomposition (4.42) allows us to parametrize the elements of W1 in terms

of the differentials on σ. Let B−i ∈ H1(σ,O(−i)), i = 6, 8, 9 be the differentials on σ.

Let b−i = π∗B−i be their pullback to dP9. B−i are elements of H1(dP9,OdP9
(−iF )). To

construct an element w1 ∈W1 we need to multiply π∗B−6 by a section of OdP9
(3σ), π∗B−8

by a section of OdP9
(3σ + 2F ) and π∗B−9 by a section of OdP9

(3σ + 3F ). We can choose

these sections to be z, x and y. Thus, w1 ∈W1 can be parametrized as

w1 = b−6z + b−8x+ b−9y. (4.44)

Similarly, one can parametrize w2 ∈W2. First, we note that

W2 = H1(dP9,N (−F )) ≃ H1(σ, π∗N (−F ))

= O(−1) ⊕O(−3) ⊕O(−4) ⊕O(−5) ⊕O(−6) ⊕O(−7). (4.45)

The dimension of W2 is then given by

dimW2 = 0 + 2 + 3 + 4 + 5 + 6 = 20. (4.46)
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Now an element w2 ∈W2 can be written as follows

w2 = c3zx+ c4zy + c5x
2 + c6xy + c7y

2, (4.47)

where c−j = π∗C−j, j = 3, 4, 5, 6, 7, where C−j are elements of H1(σ,O(−j)), that is

differentials on σ. The map fC is a multiplication of w1 in eq. (4.44) by C in eq. (4.39). The

result of it must be an element w2 in eq. (4.47). This multiplication can be organized in a

20×20 matrix depending on {ψa, φb, χc} in (4.40). We present some details of construction

of this matrix in appendix C. The determinant of this matrix is

detfC = P4, (4.48)

where P is a homogeneous polynomial of degree 5

P = χ2
1χ3φ

2
3 − χ2

1χ2φ3φ4 − 2χ1χ
2
3φ3φ1

−χ1χ2χ3φ3φ2 + χ2
2χ3φ1φ3 + φ2

4χ
3
1

−2φ2φ4χ3χ
2
1 + χ1χ

2
3φ

2
2 + 3φ1φ4χ1χ2χ3

+φ2χ1φ4χ
2
2 + φ2

1χ
3
3 − φ2χ2φ1χ

2
3 − φ4φ1χ

3
2. (4.49)

Note that P does not depend on ψa. Eqs. (4.48), (4.49) represent an explicit equation

in the moduli space of the vector bundle near which some number of (anti)-fundamental

multiplets becomes light. Note that, this is not enough to generate massive SQCD in

the free magnetic range since we need to know how many multiplets become light. We

will analyze it later in this section. Before that, we will show that the reason why the

(anti)-fundamental multiplets are massive away from the zero locus of detfC is precisely

the Yukawa-type superpotential (3.31), (3.32).

4.3 The superpotential

In this subsection, we will show that the exact sequence (4.32) which we can write as

0 → H0(σ,K1/2
σ ⊗ V |σ) →W1

fC→W2 → H1(σ,K1/2
σ ⊗ V |σ) → . . . (4.50)

can be interpreted as an algebraic geometry version of the superpotential (3.31), (3.32).

First, we will use the Serre duality to write

H1(σ,K1/2
σ ⊗ V |σ) ≃ H0(σ,K1/2

σ ⊗ V ∨|σ)∨. (4.51)

Second, from (4.50) it follows that H0(σ,K
1/2
σ ⊗ V |σ) is a subgroup of W1. Similarly,

H0(σ,K
1/2
σ ⊗ V ∨|σ) is a subgroup of W∨

2 . When we multiply an element w1 ∈ W1 by fC
we obtain an element w2 ∈ W2. This element can be paired up with an element of W∨

2

to produce a complex number. The map fC depends on the vector bundle moduli and,

hence, can be viewed as an element in H1(σ, (V ⊗ V ∨)|σ). Thus, the sequence (4.50) gives

a natural map

H0(σ,K1/2
σ ⊗ V |σ) ⊗H1(σ, (V ⊗ V ∨)|σ) ⊗H0(σ,K1/2

σ ⊗ V ∨|σ) → C. (4.52)

This map is exactly the superpotential as explained at the end of subsection 3.4.
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4.4 Examples of SQCD

In this final subsection, we will give examples of SQCD in the free magnetic range within the

framework of the Example. given in subsection 4.2. For this we need to understand how

many (anti)-fundamental flavors become light near the locus detfC = 0 in eqs.(4.48), (4.49).

This number is the dimension of the kernel of the matrix fC. At any point in the moduli

space where detfC = 0 the rank of the matrix fC is less than 20. Note that the rank changes

as we move in the zero locus of detfC. Let r be the rank of fC at some point in the moduli

space. Then the dimension of the kernel of fC is simply 20 − r. Unfortunately, a detailed

study of the rank of fC in different regimes in the moduli space requires a hard numeric

work. However, for some values of the moduli ψa, φb, χc the matrix fC simplifies and one

can prove the existence of subspaces where a certain specific number of flavors becomes

light. It will be enough to present examples of SQCD in the free magnetic range.

Let us study the subspace of P
12 where ψa = 0, a = 1, . . . , 6. Then one can show that

it is possible to arrange the rows and columns in such a way that the matrix fC becomes

block-diagonal with four identical 5 × 5 blocks of the form

M =















φ1 φ2 φ3 φ4 0

0 φ1 φ2 φ3 φ4

χ1 χ2 χ3 0 0

0 χ1 χ2 χ3 0

0 0 χ1 χ2 χ3















. (4.53)

Note that the determinant of M is precisely the polynomial P in eq. (4.49). In other words,

the determinant of the whole matrix fC is the determinant of M raised to the power four.

It is easy to see that setting, for example, φ1 = χ1 = χ2 = 0 reduces the rank of the matrix

M by one. Since fC consists of four blocks of M the rank of fC at this locus drops by four.

This proves that there exist a subvariety L1 ⊂ P
12 containing the subspace

ψa = φ1 = χ1 = χ2 = 0, a = 1, . . . , 6, (4.54)

where the rank of the matrix fC drops by four. Similarly, it is not difficult to prove that

there exists a subvarity L2 ∈ P
12 where the rank of M drops by two and the rank of fC

drops by eight. For example, the following subspace is contained in L2

ψa = φ1 = φ2 = χ1 = χ2 = 0, a = 1, . . . , 6. (4.55)

Of course, the subvarieties L1 and L2 are much wider than the their subspaces specified in

eqs. (4.54) and (4.55). However, for our purposes it is enough to establish that L1 and L2

are non-empty. It is very likely that by turning on the moduli ψa one can achieve that the

rank of fC drops by any number between 4 and 8. Now we give some examples of SQCD

in the free magnetic range.

• Let us choose the low-energy gauge group to be

ΓS′ = SU(3). (4.56)
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The free magnetic range for the gauge group SU(3) is given by

4 ≤ Nf <
9

2
. (4.57)

We see that Nf = 4 is a solution to (4.57). We showed above that there exists a

subvariety L1 in the moduli space where the rank of fC drops by four. This means

that dimension of the kernel of fC is four. This, in turn, means that near L1 we have

exactly four fundamental flavors. Thus, near a generic point of the subvariety L1 we

generate SQCD in the free magnetic range with

Nc = 3, Nf = 4. (4.58)

• Let us now choose the low-energy gauge group to be

ΓS′ = SU(6). (4.59)

The free magnetic range for the gauge group SU(6) is given by

7 ≤ Nf < 9. (4.60)

From our discussion earlier in this subsection we know that there exists a subvariety

L2 in the moduli space where the rank of the matrix fC drops by eight. Hence, the

dimension of the kernel of fC becomes eight. Thus, near L2 we have exactly eight

fundamental flavors. This ways we generate SQCD in the free magnetic range with

Nc = 6, Nf = 8. (4.61)

Note that the fact that detfC is given by a polynomial of high degree is rather helpful

in generating a suitable number of flavors.

Clearly, using the technics presented in this paper, one can construct many other

examples of SQCD on F-theory seven-branes and find the regimes in the moduli space

where the number of flavors is in the free magnetic range.

5. Conclusion

In this paper, we address the question of realizing dynamically SUSY breaking SQCD [25]

in F-theory. Our starting point is the field theory on the intersecting seven-branes obtained

by Beasley, Heckman and Vafa in [22]. In our model, one of the seven-branes realizes N =

1, SU(Nc) supersymmetric Yang-Mills theory. The other one contributes vector bundle

moduli. Finally, the matter fields in the (anti)-fundamental representation of SU(Nc)

comes the intersection. These matter fields have a quadratic superpotential with the mass

matrix depending on the vector bundle moduli. In order to obtain SUSY breaking SQCD

in the free magnetic range one has to move to a certain regime in the moduli space where

an appropriate number of the matter fields becomes light. Conceptually, this is similar to

analyzing how many Higgs multiplets one has in heterotic standard models of [11 – 16]. For
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example, in the model of [15] one can have zero, one or two Higgs multiplets depending on

the location in the moduli space. Though in this paper, for concreteness, we work in the

context of some specific choices of the type of the ADE-singularity and of the geometric

data, our method has, of course, a wider applicability.

A natural question which arises is whether it is possible to generate the mass term for

the (anti)-fundamental multiplets not by vector bundle moduli but by D1- or D3-brane

instantons. The mass obtained this way will be exponentially suppressed by the volume

of the Euclidean D-brane. This idea of generating a small mass was used recently in

other contexts in [44, 50 – 53] (see also [54 – 57] for similar calculations). If this Euclidean

D1-brane (or D3-brane) intersects the space filling branes, which are the seven-branes in

our case, in general, there are fermionic zero modes due to Ganor’s strings [58] stretched

between the D1- (or D3-) and the space-filling branes. These instanton zero modes will

couple to the (anti)-fundamental matter fields Q and Q̃. Hence, upon integration of these

Ganor’s zero modes one can generate a non-perturbative superpotential for Q and Q̃. One

can approach this problem by first generating a massless SQCD and then showing that one

can produce the mass term by D1- or D3-brane instantons intersecting the seven-branes.

It would be interesting to explore this in the future.
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A. The twist on the surface

In this appendix we will review the twisting procedure to obtain a theory on R
3,1 × S,

where S is a compact Kahler surface over which we wrap the seven-branes.

We start with the maximally supersymmetric theory on R
3,1 × C

2. The symmetry of

this theory is SO(7, 1)×U(1)R. In addition to the eight-dimensional gauge field, this theory

contains a complex scalar φ, φ̄ and two fermions Ψ± transforming under SO(7, 1)×U(1)R as

(

S+,
1

2

)

(A.1)

and
(

S−,−
1

2

)

(A.2)

respectively. Here by S± we denoted the positive and negative chirality representations

of SO(7, 1). This theory is invariant under two supersymmetries whose parameters ǫ±
transform in the same way as Ψ±.4 Our aim is to obtain a theory on R

3,1 × S whose

4The simplest way to see these results is to recall that this theory can be obtained by compactifying the

ten-dimensional supersymmetric Yang-Mills theory to eight dimensions.
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symmetry is reduced to SO(3, 1) × SO(4) × U(1)R. Here SO(3, 1) is the Lorentz group

in four dimensions and SO(4) is the structure group of the tangent bundle of S. The

parameters ǫ± decompose as follows

ǫ+ ∈
(

S+,
1

2

)

→
[

(2,1), (2,1),
1

2

]

⊕
[

(1,2), (1,2),
1

2

]

(A.3)

and

ǫ− ∈
(

S−,−
1

2

)

→
[

(2,1), (1,2),−1

2

]

⊕
[

(1,2), (2,1),−1

2

]

, (A.4)

where by (2,1) we denote the left-handed spinor of SO(3, 1) (or SO(4) depending on its

position in the square brackets) and by (1,2) we denote the right-handed spinor.

The twisting procedure is described by an embedding of U(1)R into SO(4). In fact,

since S is Kahler, its structure group is reduced to U(2). Thus, we need to specify how

U(1)R is embedded in U(2). It was argued in [22] that the unique choice up to isomorphism

is the twist under which U(1)R is embedded into the center of U(2). Let J be the generator

of this central U(1). We can normalize J in such a way that under the reduction of SO(4)

to U(2) the spinors of SO(4) transform as

(2,1) → 20, (1,2) → 11 ⊕ 1−1, (A.5)

where the subscripts denote the charge under J . Then from eqs. (A.3), (A.4) and (A.5) it

follows that to preserve four supercharges in four dimensions the new U(1) generator has

to be chosen to be

Jtop = J ± 2R. (A.6)

It is easy to see that either choice of the sign leads to an isomorphic twist. We will choose

Jtop = J+2R. Let us check that we indeed obtain four supercharges. Under SO(3, 1)×U(2)

the supersymmetry generators transform as

[(2,1),21] ⊕ [(1,2) ⊗ (12 ⊕ 10)] ,

[(1,2),2−1] ⊕ [(2,1) ⊗ (10 ⊕ 1−2)] . (A.7)

Four-dimensional supercharges have to be scalars on S and, hence, correspond to the terms

(1,2) ⊗ 10 and (2,1) ⊗ 10.

Now let us find how the scalars φ and φ̄ transform is the twisted theory. Before the

twist they transformed as 1 ⊗ 1±1 under SO(3, 1) × U(2). According to (A.6), after the

twist they transform as 1⊗1±2. Let us interpret it geometrically. We fix conventions that

the central U(1) of U(2) acts on vectors of the holomorphic vector bundle with charge +1.

Then it acts on holomorphic differential forms with charge −1. Let sm, s̄m̄ be holomorhic

and antiholomorphic coordinates on S. Then dsm has charge −1 and ds̄m̄ has charge +1.

Therefore, φ and φ̄ become the following differential forms

φ = φmnds
mdsn, φ̄ = φ̄m̄n̄s̄

m̄s̄n̄. (A.8)

Similarly, one can analyze the fermions. The results are summarized in subsection 2.2.
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B. The twist on the curve

To discuss the theory on the intersection curve Σ we start with the untwisted theory on R
1,1.

This theory preserves eight supercharges and has a pair of complex scalars (σ, σ̄c) forming

a doublet of the R-symmetry group SU(2)R and a chiral fermion (we choose its chirality

to be negative) which transforms as 4′ of the Lorentz group SO(5, 1). The supersymmetry

generators transform as 4′ ⊗ 2 of SO(5, 1) × SU(2)R. In order to twist we reduce SO(5, 1)

to SO(3, 1) ×U(1) where SO(3, 1) is the Lorentz group in four dimensions and U(1) is the

structure group of the tangent bundle of Σ. The representations 4′ of SO(5, 1) decomposes

under SO(3, 1) × U(1) as

4′ →
[

(2,1),−1

2

]

⊕
[

(1,2),
1

2

]

. (B.1)

In addition, 2 of SU(2)R decomposes to the Cartan subgroup U(1)R as as

2 → 11 ⊕ 1−1. (B.2)

The twisting procedure is a specification of a homomorphism from U(1)R to the structure

group U(1). Let J be the generator of the structure group U(1). To preserve N =

1 supersymmetry four supercharges must become scalars on Σ. This requires that the

generator of the twisted U(1) be

Jtop = J ± 1

2
R. (B.3)

Either choice of the sign leads to an isomorphic twist. We will choose the sign to be minus.

Let us see what happens to the scalars (σ, σ̄c) under this twist. Since they are scalars

under SO(5, 1) they have J = 0. On the other hand they carry the charge ±1 under U(1)R.

Thus, after the twist their charges become ∓1
2 . This means that they become spinors on

Σ. More precisely,

σ ∈ K
1/2
Σ , σ̄c ∈ K̄1/2

Σ . (B.4)

Since the fermions do not transform under SU(2)R, Jtop = J and the twist does not affect

their geometric properties. The full spectrum is summarized in subsection 2.2. Of course,

the above fields are charged under the gauge group. However, it is not affected by the twist

and we have omitted the gauge group in this discussion.

C. Construction of the matrix fC

In this appendix we will present some details of construction of the 20 × 20 matrix fC in

subsection 4.2.

The matrix fC provides a linear map between two 20-dimensional spaces W1 and W2

given by

W1 = H1(dP9,OdP9
(3σ − 6F )) ≃ H1(σ,O(−6) ⊕O(−8) ⊕O(−9)),

W2 = H1(dP9,OdP9
(6σ − F ))

≃ H1(σ,O(−1) ⊕O(−3) ⊕O(−4) ⊕O(−5) ⊕O(−6) ⊕O(−7)). (C.1)
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The elements w1 ∈W1 and w2 ∈W2 have been parametrized as follows

w1 = b−6z + b−8x+ b−9y,

w2 = c−3zx+ c−4zy + c−5x
2 + c−6xy + c−7y

2. (C.2)

In these expressions, b−i and c−j are the pullback to dP9 of the differentials on σ ≃ P
1

b−i = π∗B−i, c−j = π∗C−j , (C.3)

where B−i ∈ H1(σ,O(−i)), i = 6, 8, 9 and C−j ∈ H1(σ,O(−j)), j = 3, 4, 5, 6, 7.

Furthermore, z, x, y are the variables in the Weierstrass equation

y2z = x3 + fxz2 + gz3. (C.4)

They are sections of the following line bundles on dP9

z ∈ H0(dP9,OdP9
(3σ)), x ∈ H0(dP9,OdP9

(3σ + 2F )), y ∈ H0(dP9,OdP9
(3σ + 3F )).

(C.5)

Note that each term in the sum in w1 and w2 in eqs. (C.2) is an element of

H1(dP9,OdP9
(3σ−6F )) and H1(dP9,OdP9

(6σ−F )) respectively. The map between w1 and

w2 is given by multiplication by an element of H0(dP9,OdP9
(3σ + 5F )) which we write as

C = a5z + a3x+ a2y, (C.6)

where ak ∈ H0(dP9, π
∗O(k)), k = 1, 3, 5. This means that ak = π∗Ak, where Ak is a

homogeneous polynomial of degree k on σ. In subsection 4.2 we introduce homogeneous

coordinates (u, v) on σ and parametrized Ak as follows

A5 = ψ1u
5 + ψ2u

4v + ψ3u
3v2 + ψ4u

2v3 + ψ5uv
4 + ψ6v

5,

A3 = φ1u
3 + φ2u

2v + φ3uv
2 + φ4v

3,

A2 = χ1u
2 + χ2uv + χ3v

3, (C.7)

where {ψa, φb, χc} are the projective vector bundle moduli. To simplify our notation, we will

remove the pullback symbol π∗ and identify b−i = B−i, c−j = C−j and a−k = A−k and view

the coefficients b−i, c−j and ak in eqs. (C.2) and (C.6) as differentials and polynomials on σ.

Suppressing for the time being the coefficients b−i and c−j we see that W1 us spanned

by the the following basis blocks

z, x, y. (C.8)

Similarly, W2 is spanned by the basis blocks

zx, xy, x2, xy, y2. (C.9)

Now we multiply w1 in eq. (C.2) by C in eq. (C.6) and expand the answer in basis elements

in (C.9). We obtain the following matrix fC

fC =















z x y

xz a3 a5 0

yz a2 0 a5

x2 0 a3 0

xy 0 a2 a3

y2 0 0 a2















. (C.10)
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The matrix fC is written in a block form where each block is a (j − 1)× (i− 1) matrix for

j = 3, 4, 5, 6, 7 and i = 6, 8, 9. Now we can compute each block by expanding ak in the

coordinates (u, v) as in (C.7). For example, let us compute the z − zx block a3. That is,

we want to compute the map

H1(dP9,OdP9
(3σ − 6F ))|b−6

a3→ H1(dP9,OdP9
(6σ − F ))|c−3

. (C.11)

The map is a multiplication by a3 in (C.7). Note that

h1(dP9,OdP9
(3σ − 6F ))|b−6

= h1(σ,O(−6)) = 5 (C.12)

and

h1(dP9,OdP9
(6σ − F ))|c−3

= h1(σ,O(−3)) = 2. (C.13)

Therefore, the block z−zx in the matrix (C.10) is a 2×5 matrix. To construct a3 in (C.11)

and (C.10) we use the Serre duality to identify

H1(σ,O(−6) = H0(σ,O(4))∨ (C.14)

and

H1(σ,O(−3) = H0(σ,O(1))∨ (C.15)

Let us introduce the two-dimensional linear space

V̂ = H0(σ,O(1)). (C.16)

It is parametrized by the linear functions on σ. That is, by the projective coordinates

(u, v). Similarly, we introduce the dual vector space

V̂ ∨ = H0(σ,O(1))∨ (C.17)

and parametrize it by the dual basis (u∗, v∗), where

u∗u = 1, v∗v = 1, u∗v = uv∗ = 0. (C.18)

Then from eq. (C.14) it follows that H1(σ,O(−6)) is spanned by the following basis

{u∗4, u∗3v∗, u∗2v∗2, u∗v∗3, v∗4}. (C.19)

Similarly, H1(σ,O(−3)) ≃ V̂ ∨ is spanned by

{u∗, v∗}. (C.20)

The coefficient a3 is a map between (C.19) and (C.20). Multiplying basis elements in (C.19)

by a3 in (C.7) and using relations (C.18) we obtain the following 2 × 5 matrix

(

u∗4 u∗3v∗ u∗2v∗2 u∗v∗3 v∗4

u∗ φ1 φ2 φ3 φ4 0

v∗ 0 φ1 φ2 φ3 φ4

)

. (C.21)

Continuing this way, one can build up the complete matrix fC. The determinant of this

matrix is given in eq. (4.49).
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[56] M. Billó et al., Instantons in N = 2 magnetized D-brane worlds, JHEP 10 (2007) 091

[arXiv:0708.3806].
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